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Abstract 

We develop the point of view that the string vertex is nothing but the 

Bogoliubov-transformed SL(2,R)- invariant out-ground state induced by the 

conformal (Mandelstam) mapping. We explicitly demonstrate this idea, using 

the open string field theory of Witten. The notion of asymptotic string fields is 

introduced and the vertex is constructed without referring to the conventional 

delta-function overlap equation. The ghost insertion factors are understood as 

a consequence of the presence of the kernels in the ghost Bogoliubov transfor- 

mations. We prove the vanishing of the anomaly of the BRST charge under the 

Bogoliubov transformations at d = 26, from which the BRST invariance of the 

vertex associated with any Mandelstam map follows immediately. Underlying 

physical pictures are contemplated. 

3 Operated by Unlvereities Research Association Inc. under contract with the United States Department of Energy 
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I. Introduction 

The gauge invariant covariant functional field theory of string has presently re- 

ceived much attention*. It has been hoped that it will offer a nonperturbative frame- 

work for the problems which we cannot address intelligibly in local field theory based 

on point particles. A crucial role is played by the BRST formulation of the first- 

quantized string’. The Fock space consisting of single string states provides a set of 

free field bases for the string field functional, giving a precise meaning to the rather 

fragile notion of functional fields. The expansion using these bases implies represen- 

tation of a free string field in terms of infinite component local fields: the lowest few 

terms correspond to the particles we observe in nature. 

A novel approach has been taken by Witten s. Here, string fields are postulated 

to be semi-infinite Lie-algebra-valued differential forms on the Virasoro group. Op- 

erations such as multiplication or integration are introduced through axioms which 

ordinary Lie algebra valued differential forms obey. 

In any of the approaches proposed so far, what is central in the formulation is 

the construction of the vertex - a first quantized state which tells us how strings join 

together. A primary ingredient is the traditional delta-function overlap equation. For 

the sake of our discussion, let us briefly recapitulate the historical route leading to 

this. The conformal mapping invented by Mandelstam’ in the first quantized light- 

cone formulation played an essential role in exhibiting the vertex appearing in dual 

amplitudes as an interaction of strings. Soon after, Kaku and Kikkawa’ and also 

Cremmer and Gervaiss realized that the Neumann function vertex in Mandelstam’s 

picture is nothing but a representation of (infinite dimensional) delta function interac- 

tions. This led them to the lightcone interacting string field theory. The construction 

of interactions in the covariant string field theory has since progressed7, taking the 

form of inheriting those tools which were developed in the lightcone frameworks. 

Conformal maps relevant to Witten string field theory have been found8J0J1J2. 

All these formulations would be satisfactory and probably sufficient as long as 

one’s purpose is tied to the classical perturbation expansion performed in the in- 

teraction picture. There is, however, one essential aspect of the string which the 

traditional approach, namely the free field representation combined with the delta 

function interaction, can hardly illuminate; namely, string interactions take place 
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without specifying where they occur. 

In this paper, we are going to develop a new framework for the construction of 

vertices. The construction is made without recourse to the traditional delta-function 

overlap equation mentioned above, providing an independent and alternative frame- 

work. The notion of asymptotic fields familiar to us in local field theory in the 

Heisenberg picture carries through in our point of view. 

A central claim in our approach is the existence of a set of bases for string fields 

in which the vertex is represented as a ground state of single string oscillators. The 

connection to the conventional form based on the free field bases is made through the 

Bogoliubov transformation specified unambiguously by the Mandelstam map. 

The existence of such bases is not a surprise; rather, it is naturally suggested 

by the very existence of the Mandelstam map as a tool for evaluating the Neumann 

coefficients of the scattering geometry in question. Let us, for definiteness, consider 

a conformal map from some region of the unit disk in the t plane to the upper half 

part of the unit disk in tu, plane (T = 0, 1, . . , N - 1). In the loglu, plane, we see a 

semi-infinite strip with width r which represents a surface swept by a string. In the 

z plane, a single string coordinate is expanded by “universal bases” ((2”; n E Z}}. 

The same object, after the map, is now expanded in the zu, (r = 0,. . . , N - 1) 

planes by “many string bases” {{uJ:; T = 0,. .-, N - 1, n E 2)). The change 

of bases from the universal bases to the many string bases induces a Bogoliubov 

transformation between the corresponding two sets of oscillators. The ground state 

defined in the universal bases is found to be a superposition of excited states if one 

sees things in the many string bases. A situation of this kind is familiar to us in the 

study of quantum field theory in curved spacetime’s. 

Once one includes the ghost and anti-ghost coordinates in question, our claim 

amounts to the statement that the vertex is an SL(2, R)- invariant ground state in 

the universal bases. The standard expression of the vertex written using the Neumann 

coefficients is obtained by expressing the ground state in terms of many string bases. 

It has been observed that the ghost part of the vertex in general requires insertion 

factors in addition to the ordinary exponential of quadratic forms. We understand 

these as the kernels of the ghost Bogoliubov coefficients. We will give explicit ex- 

amples. An analogous result has been known by Christ in his study of axial vector 

anomaliesX4. The relation to the Riemann-Roth index theorem or ghost number 
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anomaly is now manifest. 

Our claim provides a fresh and elegant point of view for BRST invariance of 

the vertices. The BRST charge is, by definition, normal ordered with respect to 

the ground state of the many-string bases. The BRST invariance of the vertices 

translates therefore into the statement that the charge is again normal ordered with 

respect to the ground state in the universal bases. This in turn means that the BRST 

charge must not be anomalous under the Bogoliubov transformation induced by the 

conformal map: * +-+ w?(z). 

We shall explicitly calculate the anomaly and show 

QBRS- : QBRS ?= - ~~cqg) (;-;g (*) 

Any vertex constructed unambiguously from the Mandelstam map is guaranteed to 

be BRST invariant in d = 26. No further proof is necessary. Whether it obeys the 

overlap equations is a separate question. The BRST invariance of the vertices is a 

genetic property of the charge itself rather than the one depending on the form of 

the vertices. The appearance of the Schwarzian derivative is reasonable from the 

transformation property of the stress-energy tensor. 

Contrary to the impression one might get at first, the construction of the Bo- 

goliubov coefficients from the Mandelstam map is a subtle problem because of the 

singularities of the Mandelstam map. They represent a string - an extended object - 

identified as a point at infinity in the logw. plane. We will see that the Bogoliubov 

coefficients contain contributions from contour integrals around these “punctures”. 

A heuristic physical picture underlying our formalism might be the following. The 

splitting and joining of strings gives rise to a change of the induced metric of the two 

dimensional world sheet. Oscillators living in the two dimensional spacetime will feel 

this change of the background gravitation and the creation and annihilation operators 

are inevitably mixed. We must, however, caution you by saying that, in the BRST 

formalism we will follow, one is not allowed to introduce world sheet metric as degrees 

of freedom. The above pictorial argument is replaced ,therefore, by a formal normal 

ordering problem. 

Most discussion of this paper, in particular, the result (*) and the insertion factors 

as kernels of Bogoliubov coefficients arc valid to any open string field theory one has 
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in mind and presumably to a full-fledged closed string field theory one hopes to 

have. For the sake of an explicit demonstration of our claim, we use, however, the 

vertices relevant to the Witten open string field theory. These include the fundamental 

three point vertex and its N-point generalization. The application of our Bogoliubov 

transformation approach to Neven-Schwarr. type vertices’s will be given elsewhere. 

We also plan to report on the corresponding examination for joining-splitting vertices 

together with remaining points’s. 

In Section 2, we formulate interacting string field theory, using the notion of 

asymptotic fields familiar from local field theory. We state the main claim of our work. 

A connection with the traditional &function overlap equations is made. In Section 

3, we briefly review the conformal (Mandelstam) mapping for the type of vertices 

mentioned above. The construction of the Bogoliubov coefficients is given in Section 

4 for the bosonic part. In Section 5, we extend this to the ghost part of the vertex. In 

Section 6, we continue and complete the discussion of Section 2 , demonstrating the 

claim explicitly in the operator form. In section 7, we discuss in detail the problem 

of ghost insertion factors, exploring the kernel structrue of the ghost Bogoliubov 

coefficients, establishing the ghost number counting in our framework. The BRST 

invariance is proved I, ’ from the above universal point of view in Section 8. The 

final section is devoted to discussion and outlook. The proofs of several mathematical 

properties used in the text are given in Appendix A, B, C and D. 

‘We should mention that the use of the universal z bases has been considered in the conformal 

field theory approach in ref.(l’l) and ref.(lg). Here we take an explicitly time-dependent point of 

view without relying upon the connectivity conditions. 
2While the current approach was put forward by us, Kugo, Kunitomo and Suehiro wrote a 

preprint (ref.(19)) on the improved proof of the BRST invariance of the vertex of ref.(g). As they 

admit in their preprint, the basic idea is based on our idea which one of us informed at the workshop 

in Osaka, although some come from their early work. Their proof is still specific to the theory 

of ref.(g) since they use the explicit form of the connectivity conditions. The explicit use of the 

connectivity condition prevented them from revealing the general geometrical property underlying 

the BRST invarianve of the vertices. We will make more comments on these in Section 8. 
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II. The Vertex As The Out-Ground State 

In this section, we begin by reviewing briefly the conventional notion of vertices 

based on overlap equations tied with the free string field, namely the string field in 

the interaction picture. We then reinterpret it as an incoming asymptotic string field, 

which can be regarded as a Heisenberg operator after second quantization. We develop 

a general framework for the construction of the vertices based on the Bogoliubov 

transformation, namely mode mixing between two sets of oscillators serving as bases 

of the string field at remote past and remote future. We have a general gauge invariant 

open string covariant field theory in mind in most of the discussions. 

The main purpose of this section is to demonstrate the independence of our frame- 

work from the traditional one based on the delta-function overlap. We will see that 

the vertex constructed below is more general and may describe situations not obeying 

the delta-function overlap. 

Let us, for a moment, ignore the ghost degrees of freedom and consider bosonic 

ones only. We shall deal with the integration of a product of N string fields: 

I 
*,*Qz*...*N (2.1) 

Here, Y; is a functional of the momentum density of a string at a particular time 

slice. The conventional definition of the above quantity in the interaction picture, 

namely in the free field representation, is expressed as 

J~~~p,(~)(~~~Dlly(~)IP.(u)l) = (VI’ I ql- I qn . (2.2) 
The superscripts indicate the particular time slice chosen. Here the factor D, inserted 

is an (infinite) product of delta functions 

D, = fl WT(a)) . (2.3) 
OEd. 

and the arguments f,(u) of the delta functions are called overlaps. The one chosen 

for Witten string field theory is 

f,(c) = p.(g) + P~+I(T - g) , g E & = [‘%r/2] . (2.4) 
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The insertion factor eq. (2.3) ensures, at d,, the local conservation of the momentum 

density of N string surfaces which must form a single Riemann surface. (See Fig. 1.) 

In eq. (2.2), we also represented the string field as a ket vector of a single string 

Hilbert space set up at the time slice. The bra vector 
( 

V$’ / which sends a direct 

product of ket vectors into a complex number is what we call vertex. In principle, 

eq. (2.2) can be used to define Vg' 1, but in practice it is defined by imposing the 

overlap conditions: 

vp 1 f?(U) = 0, 7 = I),... N-l, aed,. (2.5) 

A few remarks are worth mentioning. The momentum density at an arbitrary 

point (T,, c?) of the rth string is written as 

p(q) = ~cx:w:, with W, = e”+iu7 . 
n 

(2.6) 

In the covariant formulation, there is no notion of a time universally defined over a 

single string. One has to introduce infinitely many times &(a). String fields are, in 

general, functionals of p(w7) at a particular time slice expressed as conditions among 

&(u) and r,: 

Q[ p(q); &(cT) = fixed,T, = fixed] . 

Obviously, the time slice in eq. (2.2) corresponds to 

(2.7) 

t,(u) = 7, = 0 , cw 

and 

Q(O)[ p(u) ] s sq p(w+) ; t7(r) = 7, = 0 ] (2.9) 

The ket vectors at another time slice in the interaction picture is related to the 

previous ones by the evolution operator since they are the same state vectors. There 

is, however, one physically distinct choice among various time slices: it is t,(a) = 

r, = -co. Eq. (2.2) is now written as 

(vi$ l +.. 1 $yN . (2.10) 
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The vector Vk 1 satisfies the same overlap equation : 

( 
v- 1 f?(b) = 0 . (2.11) 

Here, f?(u) is obtained from eq. (2.4) by replacing p,(u) by P’“(W) = ,,&~~p(w,). 

So far, the discussion has been about free string fields and two sets of bases set up 

at two different time slices are trivially related. Let us imagine, for a while, working 

on general curved surfaces. The evolution of string configuration in intermediate 

times is subject to modifications. But one can invoke the conventional asymptotic 

conditions to keep all string configurations at t(a) = -cc incoming asymptotic free 

configurations. In other words, a Fock space built out of the direct product of N “in- 

ground state” xfi’ 1 0 in) , by acting a set of oscillators {{a:; T = O,l,. . , N - 

1, n E Z)}, is providing a let of bases at t(u) = --m for interacting string fields, 

namely string fields in the Heisenberg picture after the second quantization. 

For the sake of later discussions, we introduce the following coordinates for in- 

coming string 

a,,(w,) = c a~%;*-~, 
n 

= &Pi”(%) ,r=o,... N-l, W,E% (2.12) 

We indicate, by the subscript, that a,,(~,) is a weight one conformal field in the 

first quantized language. It is expanded by the Laurent series with a set of bases 

{{w:; T = 0,. . . N - 111. E 2)). We call th ese bases for the first quantized operators 

the many-string bases. The operator u,(w,) is originally defined in the upper half 

part of the unit disk 72,. The open-string boundary conditions require that it be 

extended to the lower half part analytically. 

Let us first draw an alternative pictorial view to Fig. 1 as this turns out to be 

the basis of our intuitive understanding for what we develop later. (See Fig. 2.) 

We prepare, at t?(c) = -00, incoming string configurations carrying definite local 

momentum densities. The in-bases are already given. A natural question arises: 

what are the asymptotic out-bases 1 From the figure, we see the strings overlapped 

with each other to become a single string. We therefore postulate the existence of 
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a single string Fock space as asymptotic out-bases. The relevant coordinate with 

conformal weight one is 

a,(z) = c a;t*-n--l, 2 E 2) . (2.13) 
n 

with 2, being a domain in the complex plane. We call the bases ((2”; n E 2)) for 

the first quantized operator universal string bases. We often suppress the superscripts 

“in” and “out” from now on. The two objects Cam, T = 0,. .. N - 1 and a,(z) are 

related by the transformations given by the evolution operator. On the other hand, 

they must be transformed as conformal fields. We therefore conclude 

(2,(z) = V,awF(w,)U;’ = @L,,(w,), for 2 E Vr . 
dz 

Here, ‘D, is a segment of the domain V and 2) = lJy=il~,. Alternatively, one can 

write 
Iy-’ dZU,(z) 

c%(z) = c --a,,(~t,)&, with B, = 
1 ifzED7 

r=o dz 0 otherwise 
(2.15) 

The map has been known generically as a Mandelstam map. It has been used as 

a technique for evaluating Neumann coefficients appearing in the expression of the 

vertices. The pictorial view represented by Fig. 2 and its relation to the map seem 

to have been unclear. We, in a way, promoted the notion of the map to a statement 

in the Hilbert space of the first quantized string. 

On what grounds, can we argue for our postulated out-bases? Let us, for that 

purpose, work with the special (and traditional) case where two neighbouring do- 

mains ‘D, and D+ are intersected with a line. It is easy to see that the existence of 

a single-string Fock space as out-bases for string fields already implies the overlap 

condition (2.11) by a judicious choice of the Mandelstam map. Let z be located at 

an intersection of ‘0, and ‘D,,. Since a,(z) is regular around this point, we have, for 

arbitrary state 1 r> in the many-string Fock space, 

( 
dw, v I -&%’ 

Choosing the map 2 = -E, we see that the overlapping condition (2.11) is satis- 
, I 

fied. (See a more precise argument we make later.) 
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So far, all the discussions have been about bosonic string degrees of freedom. It 

is straightforward to extend them to the ghost degrees of freedom. We employ the 

original fermionic description of the ghosts and the antighosts. The relevant first 

quantized operators for the asymptotic in-bases for the ghost sector are 

C”‘(W,) = c cpw;n+l (2.17) 

bY,Y,(wT) = ;: bpw;“-~ r=O,...,N-1 . (2.18) 
n 

They are ghost and antighost coordinates which have conformal weights minus one 

and two respectively. The in-bases are obtained by acting the creation operators on 

the product of the ground state of each string, which we define to be 1 t>?: namely 

bp T>F= 0 ) ?a 2 1 (2.19) 

cp T>+ 0 ) n 2 0 . (2.20) 

Following eq. (2.13), we introduce 

b,,(z) = ~bnt-“-’ and 
n 

c’(z) ,= Cc&-n+1 . 

n 

Their single-string Fock space is providing out-bases for the ghost part of string fields. 

Eqs. (2.18), (2.19) and eqs. (2.20), (2.21) are related by 

c”(z) = c 
dz 

-Pi’, , and 
, dw, 

The overlapping condition analogous to eq. (2.11) are automatically implied by the 

existence of the operators (eqs. (2.22), (2,23) ), 1’ ’ g lvm on the complex z plane as in 

eq. (2.16). 

We have seen that the existence of the out-bases consisting of a single string Fock 

space implies the traditional overlap equation when the map is appropriately chosen. 

Reproducing the overlap eq. (2.16) is, however, not the direction we put forward in 
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the rest of the paper. As is mentioned before, we rather develop a framework for 

the construction of the vertices which is just based on the existence of the in- and 

out-bases. The following claim is an integral part of our formalism. 

The vertez appearing in string field theory is an SL(2, R) invariant out- ground 

state, that is, it satisfies 

v I % =o ,nlO, 

V I bn =o ,nll, 

VI& =o ,n<-2. 

(2.25) 

We will prove this explicitly in the operator form in later sections, taking the 

vertex of Witten string field theory and its N point generalizations. Let us give 

here a less rigorous argument to get a feeling about why out-annihilation oscillators 

must annihilate the vertex. The above claim implies that, for any final eigenstate 

( 
f ; t(c) = t --P +m I in the many-string Fock space, 

( 
f, t(a) = t + +co I 

P, t(a) = -m) = 0 unless f is a ground state. This can be readily seen from the 

expression 

$m,C (&to) exp(---ik(t - to))(n,toIV’“,t(u) = --a) (2.26) 
n 

by invoking the conventional continuation to the imaginary time axis and the asymp- 

totic condition. The time to is the time where the surface becomes flat. The large 

time propagation after the interaction projects the state into the final ground state. 

The above argument is, however, not completely pleasing : in the covariant for- 

mulation, a negative metric for string oscillators is present and therefore the continua- 

tion procedure should be more subtle. A somewhat related objection about the claim 

is the following: the claim implies, for an arbitary state f, (v I %(~),b(z),c(z) I r) 
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is regular as z + 0 i.e. at the interaction point. But in the conventional approach, 

this point has been found to be singular and the vertex does not obey the overlap 

condition in general. We shall deal with this paradox by “regulating” the confor- 

mal map (Section 3). The overlap condition with the regulator is no longer a delta 

function type. We will understand insertion factors in a more general way in Section 

7. 

In the rest of this section, we will assume the claim and set up our framework 

without using eqs. (2.11) and (2.25). From eqs. (2.15), (2.23) and (2.24) alone, 

we see that in-oscillators and out-oscillators are linearly related. We spell out these 

Bogoliubov transformations to establish a notation; 

CY, = ~A~)‘,$) , &’ = c ‘pa, 
f,r n 

c, = p+$) , n $’ Ix c Ri')"c,, 
f,r n 

b,, = -j-Q(')'@) , @) = -~$$'*TJ,, . n 
4. n 

(2.27) 

We call AC)', Pt)’ and Qt)’ Bogoliubov coefficients and IIF’“, RF)" and SF’” inverse 

Bogoliubov coefficients respectively. We are going to evaluate them directly from the 

Mandelstam map in Section 4 and 5. We will also show that the transformation 

must be understood in terms of certain matrix elements. Let us take here that these 

coefficients are given and express the vertex state in terms of in-bases. 

Write the vertex state 
( 

V, I by a direct product of the state x VN 1 for the 

bosonic oscillators and gh V, I for the (anti-) ghosts: namely, 

(vN I= +‘N 1 X gh(vNl . 

First consider the bosonic part 

N-l 
V,l ~~A$,""'&=O, n<O (2.29) 

r=o m 
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The solution must be the exponential of the quadratic form : 

x vNI=xfk; ,I -i Ne 5 CY~)NJ,~,CX~) , 
r,s-0 f,m=O 1 

with , 0 I aI” = 0, e < -1 . - 

Here, czt) s p(‘) = at’ + &‘jt, ~(7) = ;(@I;) - =t)t) and [&‘), &)t] = 1. 

Also, 0 I &‘)’ = 0, i.e. it is the oscillator-ground state. 

The coefficient NJ: must satisfy 

N-l m 
A!,+" - c xAk)-'LN;; = 0, n 5 0, 

,=O f=l 

form>Oand r=O,l...,N-1 . (2.31) 

As we shall show the details in Appendix A, the solution to eq. (2.31) is unique and 

given by the standard Neumann coefficients. 

To identify N;A in our framework, we calculate the following two point function 

in two different ways: 

x 
( 

VNI~(IL)CY?~IO 
> 

,for !,m>l , a?) I I?) = 0 ,e >_ 0 (2.32) 

Here, 1 6 
> 

denotes the zero-momentum ground state. Using in-oscillators, one finds 

that it equals &nN;&. One can also evaluate this quantity, converting to out-oscillators, 

using inverse Bogoliubov coefficients. We obtain, in this way, a formula 

emN;; = 1 A(I,)“n,&$-” + c ill;)“h!!: (2.33) 
">l n>l, d>l 

As we shall show later, the contribution from the second term is zero. The case e = 0 

or m = 0 is defined by the limit of the above equation. Eq. (2.33), therefore, identifies 

Nl, in terms of inverse Bogoliubov coefficients. 

The ghost part of the vertex can be worked out in a similar way. But we defer 

it to later sections since the uniqueness of the ghost counterpart of eq(2.31) does 
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not hold any longer. We will see that it is precisely the origin of the ghost insertion 

factors. 

The above discussion of the construction of vertices essentially demonstrates the 

independence of our framework from the traditional one based on the delta-function 

overlap. We finish this section by proposing the following procedure for constructing 

vertices. Prepare in-bases consisting of many-string Fock spaces and out-bases con- 

sisting of a single-string Fock space. The vertex is, then, defined by specifying the 

Mandelstam map and demanding the claim. The expression in terms of in-oscillators 

is given by eq. (2.30). (See, eq. (7.15) for the ghost part.) The vertex constructed this 

way is clearly more general than the ones based on traditional framework. We can 

construct vertices from the Mandelstam map which does not quite yield the ordinary 

overlap equation. Of course,the question whether these general vertices satisfy other 

criteria, is a separate issue. In Section 8, we shall show the BRST invariance of the 

general vertices. For N = 3, it implies an order 9 gauge invariance for the string field 

theory having the action of Chern-Simons form. 

III. Conformal Mapping 

Let us briefly recapitulate the conformal mapping for the N-vertex introduced in 

ref.(g). The universal z-plane is decomposed into N domains in such a way that 

N-l 
{ z-plane) = U V,, 

.=O 

s=O,l,...,N-1 (3.1) 

The s-th string lives in the domain V, defined above and its coordinates are given 

by the conformal mapping 

7. + in. = logw, , (3.2) 
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,z*f~ - je-’ 
M.(Z) = -l*N,le-” +i = “(ZN’2) for s = even , 

zNf2 + ie? 
-2ZN/2e-r _ ; = w(-z*“) for s = odd , (3.3) 

when /z/ 5 1. 

Here, we introduced the regularieation parameter E. It is designed to obtain the con- 

vergence of summations of infinite series which we perform in various manipulations 

(e.g. Appendix C) and should be set zero after the computations. 

We draw pictures of surfaces swept by strings in Fig. 3 and Fig. 4 for case N = 4. 

They clearly show how the strings overlap each other at the interaction time. For a 

finite value of E, the strings overlap gradually from the end points towards the mid- 

point, while, for E = 0, the overlap occurs instantaneously. The parameter E has been 

introduced in such a way that the strings never hit the mid-point. (c.f. w.(O) = iemf.) 

As we briefly mentioned in Section 2, the existence of the out-oscillators implies, 

for 2 CD. rl D,+I, s = 0, 1,. . . , N-l, relations between two adjacent strings: 

CW’(W.) = ~c~.“(“‘+‘) = -~c-(W,+l) , 
‘w.+1 

bww(‘d = (~)2L+~..+,(w+~) = (~)‘bw.+,w.+,(w.,,) (3.4) 

The above equations immediately imply the overlapping conditions for p(~,u) = 

wczw(w), C(T, u) = w-lc” and b(r, u) = w2bw,,: 

p.(r = VI, fl) = -P.+l(r = 70, r - c) , 

C,(T = T,J, u) = -c.+1(r = To,7 - 0) I 

b.(r = ~0, o) = +&+x(7 = 70, r - c) , 

for 0 I (T 5 7r/2 and 
1 - lzll 

Q = -el + ,$ 

We have to keep in mind, however, that equations like (3.4) and (3.5) which relate 

different strings are meaningful only in the sense of matrix elements. In the next 
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section, we shall make more specific statements on the bra and ket vectors by which 

the operator equations of this kind should be understood. We also remark that the 

overlapping condition with the regulator is not quite a delta-function type. 

For the case N =odd, the mapping, t H w, given by eq. (3.2) has a cut with the 

branch point t = 0. In this case, we have to consider a Riemann surface made of two 

sheets glued together at the positive real axis. For the case N =even, a single z-plane 

is sufficient. 

So far, the map is defined in the region Izj 5 1. To construct Bogoliubov coef- 

ficients unambiguously, it is necessary to extend the map in the region 121 2 1. We 

would like to define the map so that the smoothness across 1.z = 1 translates into the 

open-string boundary conditions. We also want that the image strings never hit the 

mid-point as well. The map equipped with these properties is 

Wa,im(Z) = 
.yV~ - ie’ 

--z 
.zNIaeC + i 

E w;,(*N~y for s = even , 

.tN12 + ie’ 
--E tNlle~ - i = 

w~,,,(-z~/~) for s = odd . (3.6) 

Since the difference between the maps’(3.3) and (3.6) is only a sign of E, we suppress 

the subscript im from now on unless it is necessary to distinguish these two maps. 

IV. Bogoliubov Coefficients-Bosonic Part 

In this section, we are going to give explicit expressions for the Bogoliubov coeffi- 

cients and the inverse Bogoliubov coefficients explained in Section 2. The details will 

be given only for the bosonic oscillator a,(z). 

For r < 121 < R, the Pompeiu formula”’ for a,(t) reads 
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+ 444<R~ ffg=-&a&) (4.1) 

(It is a simple consequence of the Stokes theorem applied to the region T < 12’1 < R 

with a small circle cut out around the point L. See, Fig. 5.) If it were not for the 

last surface integration term, eq. (4.1) would be just a Cauchy formula. The reason 

why we need the Pompeiu formula, a generalization of the Cauchy formula, is that 

the mapping (3.3) has zeroes at z = z, = exp(F $ $) in the limit E + +O. This 

implies that da,(z)/&* in the last term of eq. (4.1) behaves like a delta function at 

z = .z, when we substitute the expression 

a,(z) = ya&,) 
= ddz) dz ~&;~-~ for z E 2). . 

As we already remarked, any operator equations which relate different strings should 

be understood in the sense of matrix elements. We specifically consider the following 

set of bra and ket vectors: 

t( 
v I ““,,a”, ,..., %r, cni<m} 7 

with V/a, =OforVn<O , 
( 

and 

,$I) , 1” .19L (‘L)xflll / o),, Cl, < -) , 

with a$‘)/0 >,= 0 for V e 2 1 

(4.4) 

An immediate consequence of the choice of the bra vectors (4.3) is that the series 

a,(z) = c a,t-“-1 (4.5) 
n 

effectively terminates at a certain negative value of n and converges for 1~1 > 1. 

Similarly, the series 

a,, (w,) = T a~40;‘-’ (4.6) 
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converges in this sense for Izu.1 < 1 or r, < 0. 

The right hand side of the Pompeiu formula (4.1) is now expanded for 1 < /z/ < R 

as 

f&+ ~~-1Zn~*4Zo + f&+ g) “t-“-‘44 

t gNg& g+-*-%G(z’) . (4.7) 

Here C, is a small contour around z,. Recall that da,(z)/dz’ has its support in the 

neighborhood of z, and that I.z./ = 1 as E --t +O. Thus the convergence of the last sum 

is guaranteed. Putting all together, the expansion (4.5) equals (4.7), which implies 

and 

a, = 
P ~,~,,=~) g+&~) + Ng;h# &%’ “az~(z’) fornL0, (4.8) 

a, = 
! 

dz’z%,, (2) 
{Iz’Idt) 2ni 

fern<-1 

Decompose the contours Iz’l = T and ItI = R around the origin into the paths as 

shown in Fig. 6. Then we have 

and 

an = g (1, g+Yz8(,7 + h ~zY-&)) for n 2 0 ) (4.10) 
A 

N-l 
a,= c 

/ 
dZ’zma*l(*f) 

,=O A. 2Ki 
for n 5 -1 (4.11) 

Note that the union of the path a, and the contour C, can be deformed to A,. 

We may, therefore, use either eq. (4.10) or (4.11) irrespectively of the sign of n. Now 

that each integration path is confined inside the s-th string region V,, we can rewrite 

a,(z) in the integrand by using the transformation rule for z E V,, 

h(z) Q,(Z) = - dz %,(4 > (4.12) 

where w.(z) is defined by eq. (3.3). I nserting eq. (4.12) into eq. (4.10) or (4.11) with 

the expansion 

a,,(w.) = c cp(m,)-‘-1 , (4.13) 
1 
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we have 

N-l 

%I = z ‘$ At) ‘at) , and 

A;)’ = J 7z,d44 dz’ 

‘A+;; 2x1 dt, (w.(4)-‘-’ . 

(4.14) 

(4.15) 

Let us turn to the inverse Bogoliubov transformation. Apply the Pompeiu formula 

to a,,(~,) in the W.-plane (Fig. 7 ). We write 

dw’ a,,(~‘) - 
27ri w’ - w, - 

dw’ a,,( w’) 
2xi w’ - 2~. 

dw’dw” d,+-zwt(w’) + JJD 21ri d-w, . 
The integrand of the last term on the right hand side has its support only at lw’( = 1 

in the limit E -+ +O, as we see when the transformation rule 

a,(m) = $(z) 
is substituted into eq. (4.16) with a,(z) being the expansion eq. (4.5). 

As already noted, the series 

a,,(w,) = c al’)(w,)-‘-1 
L 

effectively terminates at some positive value of e in the sense of matrix elements. 

Both sides of eq. (4.16) are now expanded by W,(Z), with .z E D, 

j-y-y ap(w.)-~-’ = z $,w,(=R) g+-‘4~~1 
+ E $y,,=t) g+~t44 
- z s6,+_ ~20~-%:aw’(w~) , (4.17) 
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where CO+- is a contour enclosing w,(O), W.(M) and a cut connecting these two 

points. (See, Fig. 7). From eq. (4.17), we obtain 

&’ = f dw’w’~a,+d) , 
+‘I=,) 2ai 

fore20 , (4.18) 

and 

fore 5 -1 . (4.19) 

Substituting the transformation rule a..(~,) = &cr,(z) into the integrands of the 

right hand sides of eqs. (4.18) and (4.19), we obtain 

$’ = c Af’ “a n, 
n 

(4.20) 

and 

hy ” = &,,+ $d+- g 

’ ,L ,--n--ldrJ 
= &+R) s-w * 2z 

- &+, $l%-n-l~ . (4.21) 

Here, the last equality holds for all L, both negative and positive, since the contour 

iw’l = 7 can be deformed to the contour Izu’I = R plus the contour Co+-. 

V. Bogoliubov Coefficients-Ghost Part 

It is straightforward to extend the results of the last section to the ghost and 

antighost, if we note the transformation properties for t E 2). given in eqs. (2.23) and 

(2.24). We only give the results. The Bogoliubov transformations are given for the 
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ghost e and antighost b as 

N-l 

e, = c c Pk’ %p, 
,=O l 
N-l 

b, = 5 T Qi" ‘by) 

The inverse Bogoliubov transformations are 

$’ = xRt’“c,, 
n 

b$” = -$ Sj”’ “b,, . 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

The coefficients have the following integral expressions 

p$f = J , dz’ 
72 

n-2 dz’ 
a:+,“. 27rt ,,,(*,)(~.(4-“’ 1 (5.5) 

Q”’ f = J . dz’ n 72 mtl 
-:+,“a 2m 

(w.(z’))-‘-’ , (5.6) 

Rj’)” = It-2 dw’ 
2fnt1 ’ (5.7) 

c$’ n = 
(5.8) 

In Appendix B, we check, for eqs. (4.15), (4.21), and (5.5)~(5.8), some of the 

relations among the Bogoliubov coefficients and the inverse Bogoliubov coefficients 

which follow from the fundamental (anti-)commutation relations. It provides us a 

confidence for both the way Mandelstam map was extended away from the original 

region Jtl 5 1 and the validity of the contour in the above expressions. 
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VI. Vertex Continued 

As outlined in Section 2, the vertex state 
( 

V. 1 is characterized as an out-ground 

state defined by the oscillators in the universal bases. Let us recall that our claim 

implies, in the many-string bases, the equation 

N-l OD 
At)“’ - C CA!,‘)-‘LNiA = 0, TZ 5 0 , 

,=O kl 
for m 2 0 and r = O,l,. . . N - 1 (6.1) 

The coefficients NiA were identified in terms of inverse Bogoliubov coefficients At’^. 

( eq.(2.33)). Having known the integral representation of Apjn, we can readily con- 

struct NiA from eq. (4.21): 

Nib = &A, &is ~(w.(~‘))-‘(w.(z~‘))-“(~, yz,,)’ . (6.2) 

(The second term of the eq. (2.33) is in fact zero as can be seen from deforming the 

contour.) This is nothing but the standard integral representation of the Neumann 

coefficients. In Appendix A, we shall show that (6.2) is the unique solution to eq.(6.1). 

This amounts to an explicit operator proof of our claim for the bosonic part. 

Let us turn to the ghost part of the vertex sh VN 1. According to our claim, it is 

an S&(R) invariant vacuum : 

N-l 
= gh vN I C c Pf)fcp) = 0 , n<-2, (6.3) 

r=O f 
N-l 

gh VN 1 b, = gh V,l c c A;)“‘b$ = 0 , n<l. 
a=0 m 

As a tentative attempt, we try 

N-l N-l 03 
gh VNl = x.,,, 8 1 C b~‘&~~~’ 

,,,=I3 1=0 “.=I 

where ~ TI is the so-called up vacuum defined by 

I 11 b$ = 0 , ml -1, 

(‘3.5) 

(6.6) 
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7 Tl$‘=O, e<o. 
( 

It is necessary that the coefficients &ii satisfy 

N-l m 

('3.7) 

pi', - C C p~'-'~i~ = 0 , n<-2,m>O, (6.8) 
r=o f=O 

N-l m 
Qt” t C C Qk’-mI?i,f, = 0 , 7~ < 1 , a! > 1 . (6.9) 

,=O n&=1 

It is demonstrated in Appendix A that 

#; = ji. 2 Aa zg (f$)’ &w;-~+~w;-~-~ , (6.10) 

constructed from Rp'" and So”” in the same way as eq. (6.2) was, satisfies eqs. (6.8) 

and (6.9) with the matrices Pk)"' and Qcl’ being given by eqs. (5.5) and (5.6) in 

Section 5 respectively. 

We now see that the discussion on the ghost part of the vertex and its Neumann 

coefficients completely parallels the one in the bosonic case. There is, however, a 

notable difference between eqs.(6.8) and (6.9) we just obtained and the previous one 

eq. (6.1) (or eq. (2.31)): The solution to eqs. (6.8) and (6.9) is no longer guaranteed 

to be unique. The ghost Bogoliubov coefficients in general possess kernels, and 82 is 

determined only up to the kernels of P,!')"' or Qtl’. In the next section, we show how 

the ghost vertex is, nevertheless, uniquely determined by filling up the modes which 

span the kernels, simultaneously removing the ambiguity of fis mentioned above. 

VII. Ghost Insertion Factors 

Recall that N-l 
Ppc;) I v > 

#h 
= 0 , 7% 2 2 , (7.1) 
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g “& Q;“” b;) I V)gh = 0 , 7&-l, (7.2) 

Let the kernel of Pi)“, m = 0,. . . be {f$l’), i = 1,. . . , dim kerP+, and the kernel of 

QP”, m=l,... be {gklj} j = 1,. . , , dim ker Q+: namely, they satisfy 

N-1 m 
5 2 Pp”p = 0 , 12 2 2 , 

N-l m 
2 2 Qn Wmgz)j = 0, n>-l. - 

Note that the range of the m summation is bounded from below. 

(7.3) 

(7.4) 

N-l m 
By inspection, we see that we can place a set of modes c c fk)‘b!fi as well 

.=o m=O 
N-l m 

as 1 C gk)jc?A f ree y without spoiling eqs. (7.1), (7.2). As one suspects, it is 1 
e=o In=1 

these modes that are responsible for the ghost number violation. The net charge 

violation is going to be dictated by the index theorem. The framework based on the 

Bogoliubov transformations provides a concrete realization of the Atiya-Patodi-Singer 

index theorem. In the following analysis, we shall investigate these systematically in 

the present context. 

It is a general and not a novel phenomenon that net charge production associated 

with anomalies reflects itself into the existence of the kernels of the Bogoliubov coef- 

ficients for the fermionic degrees of freedom. This has been observed, a while ago, by 

Christ in his study of axial vector anomaly. We adopt his analysis to the world sheet 

ghost degrees of freedom. A learned reader will notice that the adaptation we make 

is a minor one. 

Without further ado, we turn to the solution of eqs. (7.1), (7.2). Guided by the 

> 

s-h 
result in the last section, we write I V as 

1 v)llh = ezp ( -7zo ,=g=, b?n % c!Tj) I + 

We introduce a matrix notation in order to facilitate the algebra. 



-24- FERMILAB-P&87/111-T 

For instance, 

(Pp)EPp, n>2, m>o, r=o ,..., N-l , 

(Q?‘) E Q$‘“, T&>-l, m<o, r=o )...) N-l 

Here the parentheses indicate the elements of the matrices Pp’ and Q?“. Also 

(7.6) 

c-) e cp, e<-1 , r=O ,..., N-l (7.7) 

We choose 1 B 
> 

and i? so that the term proportional to c+(b+) and the one propor- 

tional to c-(b-) separately vanish in eqs. (7.1), (7.2). We obtain a set of equations 

to be solved: 

(-P+ti t P-)c- I E) = 0 , 

P+c+lE =o, 
> (7.8) 

(&+I? t Q-)b- I B) = 0 , 

Q+b+IB)=O. 

The summations over T and s indices are also implied. 

The matrices P+ and Q+ are not, in general, invertible. Using the fact that ker P: 

is the orthogonal complement of ImP+, we project eq. (7.1) onto those two subspaces. 

We obtain 

I’?=PJ’P,,~+P- f kerP+X (7.9) 

as well as 

?l’P- e- 1 B = 0 
> 

for ‘7 E kerP1 (7.10) 

Here, Pl,p+ is the projection operator onto ImP+ and X is an arbitrary vector. 

Similarly, from eq. (7.2), we obtain 

fi = Q;’ %,Q+ Q- + kerQ+Y (7.11) 
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as well as 

(‘Q- b- I B) = 0 for ‘( E ker Qi (7.12) 

Eqs. (7.10) and (7.12) demand that a set of modes ({q+‘P-c- I i = 1,. . . , dim ker Pi 

}} and {{[‘j&-b- I j = l,... , dim kerQ\ }} be filled to form / B . On the other 
> 

hand, the second and the fourth of eq. (7.8) tell us that these modes must lie on the 

kernels of P+ and Q+: 

P+((+jQ-)- = 0, 

Q+(q+;P-)” = 0, 

j = l,..., dimker Q!+, and 

i = 1,. . dimker P: . 

(7.13) 

(7.14) 

These apparently superfluous requirements are seen to be compatible once we 

reinforce the constraints coming from unitarity (anti-commutation) relations. Those 

constraints further tell us that they in fact span the kernels of P+ and Q+. All in all, 

we find the final form anticipated at the beginning: 

I v) = =T (-go ,=g=, b(_‘!, 32 c!?) 

nEyk=P+ f' . b- $yk=rQt j 9 .c- x:il IT), 

Here, {{f’, i = 1 ,..., dimkerP+}) and {{$, j = l,..., dimkerQ+}} span the 

kernel of P+ and the kernel of Q+ respectively. Note that the original ambiguity of I? 

in eq. (7.9) is completely removed in eq. (7.15) due to the nilpotent (fermionic) nature 

of the modes. The ghost vertex, which is nothing but the out-vacuum in our view, 

is uniquely determined in terms of string oscillators despite the inherent ambiguity 

mentioned above. 

In the remainder of this section, we will explicitly determine eq. (7.15) for the 

type of vertices discussed in Section 3 by finding the corresponding kernels. (Only the 

cases N = 1,2,3 are complete.) We also describe the net charge production associated 

with the Bogoliubov transformations, thereby reinforcing, in our framework, the ghost 

number counting due to the index theorem. 

To determine the form of the kernels, we evaluate, in Appendix C, the following 
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quantities: 

(PI N-l 
Z” [(i,‘] = ,z cPp’(i)’ , n 2 2 , 

f 
(7.16) 

(Q) N-l 
-& [(-l)‘(i)‘] = vFo FQ;“(-l)‘(i)’ , n 2 -1 . (7.17) 

Here, the summation is over all integers.( Note that i = w(O)@ ). 

The results in Appendix C are summarized as follows: eq. (7.16) is vanishing 

for ‘n 2 2 only when N = 1. Eq. (7.17) are vanishing for ‘n 2 -1 only when 

N = 4,6,8,. . . . It is evident that the N dependence arises from the T summation. 

Using eqs. (6.6) and (6.9), eqs.(7.16) and (7.17) can be rewritten as 

NC 5 P,,(‘)“’ ((;)” + Ng z i?;(i)-‘) and 
,=cl rn=O 

g glQ;)- ((-l)‘(i)” -g @;(-l)‘(i)-f) 

(7.18) 

(7.19) 

respectively. 
N-l m 

From these results, we conclude that &:’ = (i)” + c c fizl(i)-’ is a kernel for 
r=o (=I 

N-l cc 
N = 1 case, but not for the other cases, and that &) = (-l)‘(i)“- c c&;(-1) 

r=O k0 
(;)-’ is a kernel for N = 4,6,. . , but not for the other cases. 

The above analysis tells us the kernels located at z = 0, which is an interaction 

point for strings. One might suspect the existence of kernels at z = co as well, which 

is an image of the interaction point through the boundary conditions. To reveal this, 

we must have the Laurent expansion of the out-oscillators at .z = co: 

c’(z) = -Cc,“Z”+l , 

b,,(t) = ;b;F . 
n 

(7.20) 

(7.21) 

The corresponding Bogoliubov coefficients are obtained if one follows the procedures 
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in Section 4, and 5 : 

-1 

wciZ(z) 1 

Q-d”” = n 

(7.22) 

(7.23) 

The paths A: (7 = 0, 1, . . . , N - 1) are shown in Fig. 8. Note that v 5 arg t < 

+. The map w,,;,(t) is defined in eq. (3.6). 

Eqs. (7.1), (7.2), (7.3), and (7.4) are now modified : We replace P>)“‘, QF)“‘, fk)’ 

and gk); by P,“(r)“, Q,“(‘)“‘, f,“(‘)‘and g,,, m(+)i respectively. (The quantities f,“(‘)’ and 

g$‘)i are obtained from fL)‘:)‘and gi)< by replacing (i)’ by (-i)f). 

In Appendix C, we evaluate 

(;I) [(-j)‘] = Ne Cp,“‘d’(-;)C , n22, (7.24) 
r=ll f 

(Q==) N-l 
2, [(-l)‘(-i)‘] = ,FO FQ;““(-I)‘(-i)’ , n 2 -1 . (7.25) 

The results lead to the same conclusion as the one derived from eqs. (7.18), (7.19). 

In other words, f,$‘)( g$‘) ) is a kernel if fk)( gk) ) is a kernel. 

One can readily check that fk) = (-l)‘&,,,s is a kernel if and only if N = 2. (See 

Appendix C.) 

The above results exhaust the kernels for the cases N = 1,2,3. One must find 

more kernels for the cases N 2 4. The systematic study requires more analysis on the 

in-(or over-)completeness of the basis vectors. We plan to come back to this point in 

a forthcoming paper ‘s. 

Let us now turn to the ghost number violation. As is clear from the above exam- 

ples, the ghost number due to out-oscillator counting and the one due to in-oscillator 

counting do not match. This is precisely what the index theorem predicts. The ghost 

number operator i is defined to be: 

,j F -zj 2 : bw,w.(wv)c-(w.) : 
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s g (gc”“!.’ - =&b(l,)cj’) + ;(ct)bp’ - b$$$)) (7.26) 

= g (fglc”‘“!” -TV,“%“) ,t (n - 3/z) N 

Let us suppose that the in-ground state satisfies 

b;) 1 0, q)T = 0, l> q - 1 , 

CI” I 0, P > 
=o, r>2-q. r 

(7.27) 

It has ghost number g(‘“) = (q - 3/2)N. The present convention corresponds to 

q=2. i.e. 1 0, q), = IT), . 

Converting the expression into out-oscillators, we obtain 

4 = DN(q) + (q-3/2)N + n.o.t. . (7.28) 

Here, n.o.t. means normal ordered terms with respect to SL(2,R) invariant out- 

ground state, and 

N-l 
DN(Q) = 1 

r=O i 
c c - c c RII,)” sf-” . 
n>2 f>_p-I v&g L<p-1 1 

(7.29) 

The actual evaluation of DN(q) is described here only qualitatively since rather 

unexpected complications have prevented us from proving the result with a com- 

plete rigor. Substituting eqs. (5.7) and (5.8) into eq. (7.29), we obtain an integral 

representation for DN(q): 

(fglg -,p) b’lY)‘“‘Nwl~)f (7.30) 

Here, we have used the same change of variable used in Appendix A. One can convince 

oneself that this expression would be vanishing if one does not take into account the 



-29- FERMILAB-Pub-87/111-T 

regulator: after obtaining the closed contour expression, one sees that there are two 

terms cancelling each other. The nonvanishing result for eq. (7.29) must be due to the 

careful treatment of the integrations and the convergence of the summations, which 

is done by our regulated conformal mapping i.e. eqs. (3.3) and (3.6). 

In fact, the specification of the regulator tells us that we have to treat the integrand 

separately, depending on Iyl, ly’l 2 or 5 1. When this is done, one sees that, in two 

of the above four cases, the apparent double pole one obtains after performing the 

summations in eq. (7.30) is really two simple poles separated by E. This in turn gives 

rise to an asymmetry to the integrand, leading to a nonvanishing result for eq. (7.29). 

We plan to give a full account soon in a forthcoming paper. 

The result we state with some confidence is 

DN(Q) = -qN$3N-3. (7.31) 

The vertex, therefore, has ghost number gcDu’) = 3/2N - 3, and 

ag z gW) - gW = (3 - q)N - 3 = Ih(q) 

= N-3 for q=2, 

(7.32) 

which is the number of net insertions one has to make in the canonical formula 

eq. (7.15). Eq. (7.32) states the ghost number counting due to the index theorem. 

VIII. BRST Invariance of the Vertex from the Universal 

Viewpoint 

In this section, we are going to calculate the BRST anomaly under the Bogoliubov 

transformation induced by the general conformal mapping, z H UJ~(Z). 

In the many-string bases, the BRST charge QB is a sum of the BRST change Qg’ 
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defined for each string : 
N-l 

QE = c Ql;’ 
,=O 

The expression for Qg’ is by now standard : 

(8.1) 

Qg' = -&jL~) + Lcl;'$') + cI;)(: &cl;' : -I) , (8.2) 
kl 

rp zz Q)X + ;$)'h , (8.3) 

(8.4) 

(8.5) 

In eq. (8.2), the normal ordering : : is taken with respect to the so-called down- 

Y~CUUIII 11 > defined by 

cy 11 >= 0 for [>I, (8.6) 

bj’) 11 >= 0 for e>o. (8.7) 

By using the inverse Bogoliubov transformations, 

$’ = C”$+a 7x9 
n 

p = ~&+c, , 
n 

and bj’) = c $“‘b n 7 (8.8) 
n 

we write the right hand side of eq. (8.2) in terms of the oscillators in the universal 

bases, a,, c,,, and b,. 

Since the operators in eq. (8.2) are not normal ordered with respect to the out- 

bases (the universal bases), but with respect to the in-bases (many-string bases), we 

have to reorganize the orderings of the operators in order to see how QS acts on the 

SL(2,R)-invariant vacuum given in terms of the out-bases by eq. (2.25). 
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First consider the case of Zpjx. It is easy to see that 

Z(‘b- . zw :‘-Jl= 
f .f ffl[~(+)(w), a(-)(w)] E A: , (8.9) 

where the positive and negative frequency parts a(+)(w) and a(-)(w) with respect to 

the SZ(2, R) state are respectively given by 

a(f)(w) = cw-f-1 c Ap”a, , 
f n>o 

a’-‘(w) = cw-f-1 c ipan . 
f n<-1 

Using the integral representation for A$“” (eq. (4.21)), we obtain 

(8.10) 

(8.11) 

(8.12) 

Similarly, we have, for ghosts, 

z;)'h- : zp)gh .art = _ ~w’+‘({d,b(+)(w) 
2ra 

,c’-‘(w)} t 2{b’+‘(w),d&)(w)}) 

= AZ, - (8.13) 

A('jgh = - c St,,,,. 1 
f',f" 

(8.14) 

Before proceeding further, we find it more convenient to use an alternative but an 

equivalent expression for Qg): 

Here 

Q;’ = f&$‘) + 2 &$$‘) - ;$’ (8.15) 
f=2 k-1 

‘-$ =: &tj zart +$jx + iAt)+ , and $j = 
2 

c A(+ 
l f c, 

n 
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We rewrite Q$’ as 

Qs;' = 2 T R$q,(: 4" : +ApJx f ;Apjph) 

+ 2 (: Cccl,' : +A(‘jx ef + ;A?p)x Rj')"c,, - ;cRt'"cn. (8.16) 
k-1 n n 

The right hand side of eq. (8.16) is further rewritten as 

+C 
-7 

: &tj .c-t 

k-1 
. zRj')nc,+zRp)"4, :Lc(_;) Yt 

+g C R!'j"[k,LI')]t 2 c R~")"[L(_'~,G,] 
k1 n>2 k-1 ng 

+gxR!‘p~(A< 
12 n 

( lx + iA$‘jBh) + 5 C(~l;‘x + ~A(‘~)RP)-~ 
k-1 n 

R$+c,, . (8.17) 

The first two lines have normal ordered forms with respect to 1 V 
> 

, which we write 

as : Qg’ Y. The remaining terms are what we call BRST anomaly under the 

Bogoliubov transformations. 

We cm easily check that 

and 

[&,Lp]= ;[Cnrzp] = -$spym- 244!, , (8.18) 
m 

[L!fJ,C+.] = ~[zph 
2 

( , c-,] = ; c sppn + ze)c(_;)-, (8.19) 
m 

These should be substituted into eq. (8.17). 

Therefore, the BRST anomaly is given by 

QB- : Qe ?= (1) + (II) t (III) + (IV') , (8.20) 
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N-l m 

(I) = CC CR~~A:+ ER;A?~ C, , 
7% .d ( f=Z k-1 

(II) = ;xN2 
( 

~R:~A;~ + 5 R;AB_: 
1 

e, , 
n ,=o f=1 k-l 

(III) = ~~(~~~R~~S~)-"(2~--rn)~~~ 

+ 2 2 CR~)-"S~~~,(ZL+m)c(_;)_, , 
n=-lf=-I m ) 

N-l 

(IV) = c ~RI;)-Y$ . 
,=O m 

After lengthly computations (see Appendix D for the outline), we obtain 

(I) = I&; (-;g t $$) , 

(II) = (zzz)=~j-+){~~ -y$} , 

(IV) = 0) 

where W. = 2, etc . The final expression for the BRST anomaly is 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

with [w,] = 2 - is being the Schwarzian derivative. Equation (8.28) is a main 

result of this section. 

As we already stated in the introduction, the BRST anomaly eq. (8.28) vanishes 

in d = 26. This immediately implies 

E;Qi) 1 V) =:QB :OYtI V) = 0 . (8.29) 

This completes the proof of the BRST invariance of the vertex. We must emphasize 

that this is a very general proof in the sense that it is valid for any vertex unambigu- 
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ously specified by the conformal map. 3 We need not repeat a proof whenever we are 

given a slightly different form for the vertex. 

Our result eq. (8.28) has a following simple interpretation : as is well-known, the 

BRST charge QB is a generator of a gauge-tied symmetry replacing the conformal 

transformations. On the other hand, our Bogoliubov transformation is induced from 

the conformal (Mandelstam) mapping. This implies that the quantity we calculated 

is essentially a conformal transformation of the BRST charge, which should behave 

like 4~‘. On this ground, we argue that the BRST invariance of the vertex is in 

agreement with the nilpotency of the BRST charge in d = 26. 

Obviously, the BRST anomaly vanishes in any dimension if zu, E SL(2, R), since 

the Schwarzian derivative vanishes in that case. It has to be so, because the SL(2, R) 

transformation corresponds to the free propagation of a string. 

A final remark is in order. The result, by no means, implies that the BRST 

charge is form invariant under the Bogoliubov transformations. It is not. This is why 

the SL(2R) invariant out-ground state is consistent with the BRST invariance which 

summarizes the Virasoro gauge conditions as well as the on-shell condition for the 

asymptotic string configurations. 

‘As is mentioned in the introduction, the improved proof of ref. (19) should not be considered as 

universal. Also their treatment of the out-bases is rather different from ours: They do not consider 

the univc~sal string bases as operator valued analytic first-quantized field. We do for a specific set 

of the matrix elements. 
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IX. Conclusion and Outlook 

In this paper, we have put forward our idea that the string vertex is in general 

a Bogoliubov-transformed vacuum state unambiguously specified by the Mandelstam 

map. Taking Witten string field theory as an example, we rigorously pioved the 

correctness of this idea.The results are already stated in the introduction. Here,we 

would like to make several additional comments briefly. 

The essential spirit of our paper has been how to characterize string interactions, 

given two sets of asymptotic bases. A nontrivial change of the two local sets of infinite 

dimensional bases is given by the Bogoliubov coefficients. In this respect, it is worth 

mentioning that the results in Section 7 and Section 8 are geometrical in nature. 

This was made possible only by dismissing the delta-function overlap or connectivity 

conditions. It might be interesting to see how our approach is applicable to string field 

theory other than the one based on the BRST framework: the geometrical significance 

will appear in a more transparent way. 

As we know, the notion of the vertex is really a first quantized concept. We 

suspect, therefore, that the range of application of the Bogoliubov transformation 

approach is considerably larger than the application to string field theory, which we 

have investigated here. A possible relation to ref.(Zl) in the operator formulation 

of the first quantized closed string multiloop amplitudes needs further investigation. 

It might provide a hint to what a closed string field theory must be. Needless to 

say, the usefulness of our approach for various calculations in string field theory such 

as off-shell amplitudes must be fully examined. It is our hope that the approach 

presented here sheds light on the geometrical understanding of string dynamics, by 

simultaneously providing a useful and unified description of string interactions. 
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APPENDIX A 

Here we are going to give an explicit proof of the relation among the Bogoliubov 

coefficients Ak)l quoted in the text (eqs. (2.31) and (6.1)): 

N-l 00 

22 n 
A(‘)-‘LN;; = A;)“’ , n. 5 0 (A.11 

with N;A being the Neumann coefficients. 

In order to facilitate the manipulations, we rewrite the integral expression for the 

Bogoliubov coefficients as 

At)” = 4-I = A l “ix, 
n=N 7 

and A; = 
J 

dydwy$‘“w-‘-’ 
A 2xi dy (A.21 

Here, we have introduced the new integration variable y defined for the r-th string by 

I.i, 1 
z=eTy.,+ , O<argy<x. (A.3) 

Then we have 

forallr=O,l,...,N-1 (A.4) 

The integration path A in (A.2) in the y-plane is given in Fig. 9. Note that the 

T dependence of At)‘” is factorized in eq. (A.2). 

Similarly, the Neumann coefficients can be rewritten as follows : 

zz 
! 

4’ 
i gY’+ f 

dy” 
i2niw 

‘-~w!,-m-l~ x 
dy” 

e$3’-4(k+‘) @(ly”l > iv’/) 1 (A.5) 



-3% FERMILAB-Pub-87/111-T 

Here, we have expanded the kernel & in the geometrical series, keeping in mind 

its convergence region which is indicated by the step function 0. (It is solely for the 

purpose of the mnemonics and in fact an abuse of the notation.) 

We are now going to calculate the sum: 

N-l co 
&-‘eNE = 2 A,’ Nc’ $+‘[N;; . 

k1 r=o 
CA.6) 

The Fourier series over T is easy to compute and is given by 

N-l 

2 e+“eN;,,,’ = e+N (;) j~~!&w~-fw-l!$ x 

I, 
XL ( ) 

w-[$I) yl 
Y’ Y 11 _ y”l ’ 

with the square bracket being the integral part of the argument (Gaussian symbol). 

Then the sum (A.6) becomes 

x (!$($-[$I) y’ 
Y’ Y I2 _ y”’ 

In the third line, we have changed the variable from y’ to z’ = y’/y”, which removes 

the apparent cut in the y” planes, and the summation over e converges in eq. (A.6). 

The z’-integration region is around 1 and does not cross the cut in the t’-plane. 

Hence, we can carry out the z’ and y” integration successively, obtaining 

; (;) NL &~y+‘e+w- = A?)“’ . 

This is what we wanted to prove. 

Next, we give an outline of the proof of the relations which hold for the ghost 

Bogoliubov coefficients Pk)‘, Qk)‘, and the ghost Neumann coefficient fiz used in 
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the text (eqs. (6.8), (6.9) ): that is 

N-l m 
c c pP)mfiz = p$‘-’ , 

,=O m=O 
(A.lO) 

N-l m 

z g fi:tQn (?)f = -Q;,-- . (A.ll) 

It is convenient to express Pk)’ and Qi)’ in the form 

7y$“-ldywl-Tn 4 

* 2nr dw 
eq+, , (A.12) 

(A.13) 

Here, we again changed the integration variable from z to y as we did for the bosonic 

Bogoliubov coefficients At)“‘. Similarly to the bosonic Neumann coefficients NEl, the 

ghost Neumann coefficients are written as 

p m( = gj9jg (g) (!++lw.~-f-~~ x 

@(,y’, > ,y”,)f@~-,)(k-l] ( y”) T+(k-l) 

x k=O 

-@( Iv”1 > ,y~,)k~oe%+-‘)(L+~l (5) T+(~+‘) . 
(A.14) 

Here, we have expanded the kernel (z’ - .‘)-I in eq. (6.10) in geometrical series and 

changed the variable from z to y. 

It is easy to calculate the following series : 

N-l 
5 e%n”fi;t = 2e%q!& pg ( !gw-tlw-~ x 

x (& _ 1 (,)‘(g-[yl) , (A.15) 

N-l 
2 *zteG, = 2eyY~!cg (g)2w~-~+~w-g x 
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We go on to calculate the left hand side of eq. (A.lO) : 

(A.16) 

N-l m 

c c P$‘iv$ 
,=O m=o 

XwI-m+lwII-L-2 Y” -.--.di~l-%I , 
Z’l - 1 

dy 2, 1 dy 2.; 
= ry” - -eF’” 

c 27rz dw 
(A.17) 

Here, in the second line, we have changed the integration variable, setting y’ = z’y”, 

which enables us to remove the apparent cut in the y”-plane. We have also deformed 

the contour for the y”-integration to the one around -a/z’, so that lw’l becomes large 

and therefore the summation over index m converges. Then we can easily carry out 

the y”-integration by picking up the pole at UJ’ = 20 -l. Noting that the contour for 

the integration over z’ is around 1, which is away from the cut along the negative real 

axis. The result is 

2 2 (>I dy x,-z 4 
Fi 

--YYN ;i;;” ft.1 . elm = p(,)-c 
A 2nz 7% I 

which is what we wanted to show. 

The manipulation for the proof of (A.9) is completely parallel to the one explained 

in (A.15) with the use of (A.16). 

The uniqueness of the solution for A?)’ of eq. (A.l) comes from the fact that the 

matrix (At)“, n,e 5 0) has no kernel and therefore is invertible. This can be seen, 

for example, from the completeness relation shown in Appendix B, 

N-1 

c c A:)‘LAk)-’ = n&,+,,,, , 
1 a=0 

(A.18) 
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or with 

(A.19) 

2 (,b)&)t _ b(‘)bb)‘) = 1 , 

N-l 

(A.20) 

in the matrix notation. It is now clear that c a(’ is positive definite. Therefore, 
,=O 

there is no kernel for a(‘) and for the Bogoliubov coefficients Ai)’ n, t? 5 0. 

APPENDIX B 

We are going to present an explicit proof of the completeness relations: 

N-l 

c c At)‘lAk)-’ = I&+,,,, ,, , (B.1) 
f *=O 

N-l 

c c PpjfQk)-’ = 6,,+,, r, (B.2) 
L ,=O 

for bosonic and ghost oscillators, repsectively. The equations (B.l) and (B.2) are also 

consistency conditions which follow from the commutation relations in the universal 

and many-string bases : under eq. (4.14), the transformations 

and 

imply (B.l). Similarly, the ghost anticommutation relations 

{~nj bm} = km, o 1 

and {$', bi,t)) = 6,,.6ctm, o , 

(B.3) 

(B.4) 

imply (B.2) because they are related by eqs. (5.l)and (5.2). 

The check of (B.l) and (B.2) partially supports the correctness of our choice of 

the integration paths given in Section 4. 
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Let us start with the integral expression: 

&)I = y,+yf-l . e+%‘ , 
03.5) 

with the path A’ running from 1 to -1 via upper half plane. Performing the summation 

over s, we find 

N-l 
c c &)feA($f 
I ‘33 

, 03.6) 

if n + m is a multiple of N. Otherwise it vanishes. Let n + m be a multiple of N, and 

n be positive and m be negative without loss of generality. (If n and m have same 

sign, one can easily show that (B.6) vanishes.) 

The right hand side of (B.6) becomes 

N Wr-f-lWrtf . (B.7) 

We deform the paths so that the geometric series converge. The result is 

N (B.8) 

Here the paths are shown in Fig. 10. Evidently, the path A, - A, develop into a 

closed contour enclosing w”. We obtain 

2n 
J 

dy” dy” 
7Y trft(n+*)-1 = zn ,,Ik-1 

A” 2m I 1Y A” 2PE 
= n Sk,, . 

with k being an integer. Hence we arrive at (B.l). 

Now we turn to eq. (B.2). Recall eqs. (A.12) and (A.13) for the ghost Bogoliubov 

coefficients. We only consider the ewe that n + m is a multiple of N since, otherwise, 

the left hand side vanishes owing to the ZN Fourier summation. 

We proceed by splitting the sum c = c + c : 
I f>S I<1 

N-l 
c c pk)fQ($f 

I a=0 



-43- FERMILAB-Pub-87/111-T 

In this way, we arrive at eq. (B.2). 

APPENDIX C 

In this appendix, we evaluate the quantities defined in eqs. (7.16), (7.17), (7.24) 

and (7.25). Using the change of variables seen in Appendix A, we see that eq. (7.16) 

is nonvanishing, after the T summation, only when n is an integral multiple of N, 

i.e. , n = Nn’. Here, n’ 1 1 for N 2 2 and n’ 2 2 for N = 1. We obtain, for these 

cases, 

;;@)‘I = “(2,N)‘/,& ($) -l~‘“‘-~~w-ft’(Y)(i)f . cc.11 

We decompose the infinite sum into two parts i.e. e 1 2 and e < 1. For e 2 2, we 

make the radius of the path very large in the w-plane to guarantee the convergence 

of the series. ( This is possible only when one introduces the regulator e. ) For! 5 1, 

one can deform the path across the origin. (no singularity at y = ie’.) One can find 

a path right below the origin which guarantees the convergence of the series. (See 

Fig. 11). The summation of these two contributions develops into an expression with 

a closed contour around the origin: 

- AJA( !E-‘y-L& . (C.2) 

We set E = 0 at this point. It is now obvious that this quantity is nonvanishing only 

when n’ = 1, which is possible for N = 1 only. 

Let us now turn to the evaluation of eq. (7.17). The T summation again tells us 

that this quantity is nonvanishing if N is odd, and is vanishing for N = even unless 

n = (N/2) (2n’ + l), with n’ E 2. We, therefore, restrict ourselves to these cases. 
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We obtain 

!; [(-l)‘(i)‘] = N(N,2)j~~($)‘yzn’+‘~-f-‘(y)(i)’ . (C.3) 

Here, n’ > -1 for N = 2 case, and n’ 2 0 for N = 4,6,8,. . . . Following the same 

procedure for the deformation of the contour as above, we obtain 

- qj,; ( ~)ay”.t’~ . ((3.4) 

We conclude that eq. (7.17) is vanishing for Vn 2 -1, only for the N = 4,6,8,... 

cases. 

One can, in a similar way, analyse the quantities (7.24) and (7.25). For eq. (7.24), 

we obtain a result completely analogous to eq. (C.l) for the same cases : 

(i:)[(-i)‘] = -N(2,N)‘jA,$ (%) -ly’“‘-‘~w~~‘(y)(-i)f (C.5) 

The path A’ is shown in Fig. 12. Here, we made a change of variable z = 
,-S&JNy2/N # 

--x 5 y 5 0 Also, wirn = -is 

Again, we decompose the infinite sum into two parts : e 2 -1 and t? < -2. For 

e 2 -1, we let the radius of the path be very large in the lower half plane to make the 

series convergent. For e 5 -2, we can deform the contour across y = -ie-’ and the 

origin. One finds a path right above the real axis which guarantees the convergence. 

We obtain 

$fo$ (Y+) -ly~n’-zw;j;;y i , 
leading to the same conclusion as the one derived from eq. (C.2). 

Let us now turn to the quantity (7.25). After some manipulations, we obtain a 

result completely analogous to eq. (C.3) for the same cases. 

g,f [(-I)‘(-i)‘] = N(N/2)jA,g ( ~)‘y’“t’~~~~a(y)(-;il . cc.71 

Following the same argument for the deformation of the contour as the one leading 



-45- FERMILAB-Pub-87/111-T 

to eq. (C.6), we find 

- q/,2 ( d(1~im))2y~~~+~wi~- i , CC.81 

establishing the same conclusions the one stated on eq. (C.4). 

Finally, let us calculate the following quantity: 

N-l 
22 

P$ m(-1)‘6m,o ,n 2 2 . cc.91 

Like eqs. (7.17) and (7.25), th e only case of interest is N =even and n = (N/2) (2n’ + 

1). Also, n’ 1 1 for N = 2 and n’ 2 0 for N = 4,6,8,. . . . For these cases, we obtain 

a expression with a closed contour : 

-1 
y’-&) , (C.10) 

which is nonvanishing only when n’ = 0. 

We finish this appendix, saying that the manipulations given here largely owe their 

success to the way Mandelstam map is regulated. 

APPENDIX D 

In this appendix, we will give an outline of the calculations of (I) - (III) in 

eqs. (8.21), (8.22) and (8.231, which are vital to obtaining the expression for the 

BRST anomaly (8.28). 

First, look at 

+ 2 R$')"L@ c, , CD.11 
(z-1 

where 

Rp'" = ‘z~-~ (see, eq. (5.7) in Section 5) , WI 
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and 

A$- = 42, Sf-(t+p,o hB &i, $-r,:r’(z, :,,,, > (D.3) 

as explained in Section. 8. The quantity inside the bracket in eq. (8.1) becomes 

1 . P.4) 

IIere, we have omitted the suffix s of w for typographical simplicity. The sum over e 

is carried out by the suitable choice of the contours. We obtain 

The standard manipulation of contour integrals in the conformal field theory enables 

us to carry out the z” integration and gives 

;&$ (~)‘=l-n~~~~f’tl~‘-f’ (&l+ (D.5) 

The same technique can also apply for the summation over L’ and the subsequent 

integration over 2’. We obtain 

z R!‘j”A$“” + !zr Rj+‘A:jx 

d 
/ 

dz l--n 
.f 

dt’ ww’ 1 dw 

= zc.Tzz c. 2ai UJ’ - ‘w (9 - 2)s dz P.6) 

with C, being the contour around z. An elementary calculation shows that the z’- 

integral becomes 
dz’ ww’ 1 dw -- - = -;[w], 
2rri w’ - w (z’ - 2)s dz CD.71 
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with [w] being the Schwarzian derivative of w defined by 

[+$(g)-‘- ;(g)‘($ 

Hence, the right hand side of (D.6) becomes 

d -- 
12 C. 2niz !- 

dz 
1--n. [lo,] . 

Going back to (D.l), we obtain 

(11 = y i, gp (+I) , 
r=O 

which is just the first line of eq. (8.23). 

Let us turn to (II) in eq. (8.22), 

N-l m 
(II) = c c 1 R(‘pA$+h + 2 R~)“A~~ e, , 

n ,=o ( f=S (=-I 1 

where Rp’” is given in (D.2) and 

&h-h = - 1 6n+f’tl”,0 
P,f” 

& 2 A, !p’+~&~~-~ (g) -I x 

CD.81 

CD.91 

(D.10) 

(D.ll) 

(D.12) 

We can proceed to do the summation over ! and the integration over 2” in a parailel 

way to the previous case (I), and then perform the summation over e’. We obtain 

5 Rl.i”A$‘)d + 2 fpApp f=l k-1 
= pc* &/-,A, g ($)’ (gp [(w::,)2&g 

d%u/dzl 
-2(w’ - w;;,~ - z) dw/dz 

w ’ 2w’w-’ dw 1 
-2(z’ - z)~(w’ - w) + (w’ - w) dz z’ - L 1 (D.13) 
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The z’ integration in (D.13) turns out to be 

! 

dz’ 
y... 

c. 237% 
+-;$3~ 

Hence, going back to eq. (D.ll), we obtain 

(II) = Nfi ~cz(z,; . [WI . 

Note that the last two terms in eq. (D.14) do not contribute to (II). 

FinaIIy, we are going to calculate 

(III) = ;z (~~CR~~~~)-“(2(-m)c!l)_ 

+ 5 5 ~R$“-“S;“‘(2l$ m)&,, . 
n=-l(=-I m ) 

It is more convenient to rewrite (D.16) with an integral representation. 

(III) = ; z 56,=, ~J(‘)cW(w) 1 

J’) = g 2 c $“$‘)-“(2~ - ,),f-m-1 
n=lf=l m 

+ 5 2 c Rj’-“S~)“(2tT $ ~)IL-‘-~-~ . 
n=-l&-l m 

Here, R$‘)” is given in (D.2) and Sk)” is given by 

&a,- = $ptl &J 
( 1 

-1 

f c. 2m z 
Z-l-n 

(See eq.(5.8) in Section 5). Then the sum .J(‘) becomes 

fyJk, &d-f-, ($-q,# $P1. 

&” -1 

’ dz” c-1 
ZIl-l+nWf-m-1(2~ _ m) 

(D.14) 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.19) 
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c-1 
dw” -’ *n--l-,, ’ dz” 

w -c-4(2! $ m) (D.20) 

Carrying out the summation over n and f, we can proceed 

Wf-m-2 P - ml z, _ %,, W’l ’ l4) 

+tg,gi* $-a ($h# $@’ (g-l 

w-(-m-l (21 + ml =,, _ %, @W’l ’ 14 

= =g &A, g (SC)’ (+“m+k--‘& x 

The standard deformation of contour for the z/-integration gives 

I 

(D.22) 

An elementary calculation shows that 

Jd$]. !g ( ) 
-2 

++$2w. (D.23) 
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Since the last two terms do not contribute to (III), we obtain 

(III) = 2 i 
. ~cz(z,~rw.l (D.24) 

It is easy to show that (IV) = 0 (eq. (8.27)). T~I ‘s completes the calculations listed 

in eqs. (8.25), (8.26) and (8.27). 
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Figure Captions 

Fig. 1: Three-string overlap in the string field theory of Witten 

Fig. 2: An alternative pictorial view of incoming and outgoing string states 

Fig. 3: Four-string vertex in the universal t-plane. The s-th string sweeps the 

domain V,. 

Fig. 4: The domain 2). mapped into the logw, plane by the Mandelstam mapping: 

an incoming string at r, = -co sweeps a semi-infinite strip toward the 

interaction point. A semi-infinite strip in the lower half plane is the image 

of the upper half plane. 

Fig. 5: The domain in the z’-plane to which we apply the Pompeiu formula 

Fig. 6: Large and small contours around the origin divided into paths to obtain 

the Bogoliubov coefficients 

Fig. 7: The domain in the &-plane to which we apply the Pompeiu formula: the 

region enclosing the cut from w’(O) to w’(m) is cut out as well as the small 

disk around w, and the origin. 

Fig. 8: The paths A’, for eqs. (7.22) and (7.23) (N = 4) 

Fig. 9: The integration path A in the y-plane 

Fig. 10: The integration paths A,and A, which guarantee the convergence of the 

summations in eq. (B.6) 

Fig. 11: The integration paths which guarantee the convergence of the summations 

in eq. (C.l) 

Fig. 12: The integration path A’ in the y-plane and its deformation in eq. (C.5) 
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